TARGET ARCHERY

were almost impossible to obtain with frequency. Furthermore,
a strong bow of that pattern was especially prone to kick. If the
handle were greatly ll;ngthened to decrease that annoyance, the
working limb might become so short and broad as sometimes
to result in a paddle bow. The elliptical bow saved greatly in
the width of wood, but, like the other two forms, it was found
to lose weight by use in the field on a hot day and to usually
follow the string. Believing that such a let-down indicated a
want in theory, Jan designed mathematically a series of bows
with varying rates of stress from uniform at full draw to the
opposite extreme. Bows made up on these patterns showed that
the more correct they were at full draw the more they let down
during shooting on hot days. However, at a certain point in
the descending scale they went wrong again and started to fol-
low the string in near the dip.

Inasmuch as nearly all bow designs have been calculated on the
straight bow bent to full draw, Jan suspected that the let-down
was due to the strains caused by bracing. Study was therefore
made of the strains while the bow was resting braced and the
strains resulting from the jolt of shooting. Quoting: “A whip-
ended bow just resting braced is under a stress of 65% of full
draw out towards the tip. If the bow is fully stressed at full draw
this means that the tips are under a load of 65% of capacity all
day! This is too much for wood to stand, particularry in hot
weather. The same bow when shot takes a shock load of about
130% of full draw in the outer quarter of the limb. Handbook
values indicate yew wood will stand a momentary stress of 119%
of a safe yield strength. In 2 bow of circular bend these values
are slightly reduced, but they are still so great that if the bow be
stressed 100% at full draw, the outer quarter of the limbs will
be broken down during the braced strains. In other words, a bow
should not be stressed uniformly at full draw, but with a gradual
and considerable decrease towards the tips.

Yew is tough stuff. It isn’t likely to break, but if it is over-
stressed it breaks down in a self-relieving manner. In other words,
it follows the string to a point where all stresses are reduced to
a safe value. The cast, too, loses in proportion. This perhaps ex-
plains why so much can be gotten away with, without its be-
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coming apparent. A bow was then designed to withstand these
braced strains and still to conserve width of limb as much as
possible. Graphical plotting of all the variables narrows down
to the curve used. It is a combination of adjusted sections and
modified involute curve, bending most sharply at mid-limb and
stiffening both towards the handle and towards the tip. The stiff-
ness towards the handle is to dodge excessive width and the
stiffness towards the tip is to ease the braced strains back inta
the body of the limb.”

Jan prefers the rectangular section as being strongest for it
weight, although some convexity of the back is permissible to
match the grain. Nothing is gained by a corresponding con-
cavity of the belly.
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The above drawing shows the layout of an involute derived
from a twelve-inch cylinder, which experience has shown to be
a satisfactory size.

For practical application in bowyery the following numerical
tables have been computed. They are figured for yew of an
average modulus of elasticity, but they can be used for dagame
and osage as well; that is, the bows will be correctly shaped
though of different weight.

Table I gives the thickness in thousandths of an inch—in each
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column —at stations on the bowlimb four inches apart for differ-

ent %; radius of bend over thickness. Table II is a similar reckon-

ing of widths. Table III shows the weight to be expected from
any combination of the columns of the first two tables.
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