EFFECT OF BOW LENGTH ON STATIC

STRAINS AND STRESSES

Graph 7A shows the effect of bow length on the drawing
force and string tension. Curves are given for bows having
lengths of 4, 5§ and 6 feet. The weights of the bows are the
same for a draw of 27.5 inches. These curves show that the
work that may be gotten out of a bow goes up with the length.
The string tension also goes up with bow length. The long
bow will give a heavy arrow higher velocity, however, due to
dynamical considerations that will be treated later, the short
bow may give a light arrow a higher velocity than can be ob-
tained from a long bow.

Graph 7B shows the effect on fiber stress of bow length.
For a given force at full draw, the short bow has the greatest
fiber stress. This same graph shows the limb thickness required
to give the same full-draw force for different length bows.
The longer the bow, the greater the thickness required.
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EFFECT OF THICKNESS AND WIDTH OF A BOW
ON ITS FORM OF BENDING

If all bows were made of 2 homogenious material such as
steel, it would be possible to construct them according to
theoretical computations. The proper dimensions for any
desired bending form could be obtained by relatively simple
mathematical computations.

Most bows, however, are made of wood and the wood
varies not only from limb to limb, but within the same limb.
These variations are due to many factors, such as grain, knots,
curing, moisture content, cell size, etc. There is not only a
variation in the strength of the wood but a considerable varia-
tion in the amount of set that the wood will take.

Long years of experience are usually required in mastering
the technique and judgment necessary to construct a bow out
of any billet. Any archer who has ever made a bow will admit
that his first bows were far from ideal, although they would
of course shoot an arrow.

It is impossible to write out instructions for making a
bow of wood so that a beginner can make a perfect bow.
There are a number of good books on the subject and most of
them tell about as much as possible.

The master bowyer can give much valuable advice but
he can not give his instructions so well that a beginner can
make as good a bow from a billet as the master bowyer could
make from the same billet.

The beginner in bow making should thoroughly under-
stand that he can not copy dimensions from another bow and
expect his bow to bend in the same form or to be as good as
the one he is attempting to copy. In fact, it is quite possible
that his bow may be worthless, even though all dimensions
are identical with those of a fine bow.

As was stated in the beginning, if bows were made of
homogeneous materials, exact dimensions could be given and
followed. While it is not possible to give a set of dimensions
for a bow made of most woods, nevertheless an understanding
of some of the laws of bending should be of great value to
anyone making a bow.

It is not the intention to recommend in this paper the
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shape of a bow nor its cross sectional dimensions. However,
a treatment of the effect of thickness and width on the form
of bending may be of some assistance to archers who are in-
terested in bow making, and may lead to a radical change in
bow construction.

We shall therefore consider some specific cases which are
of fundamental importance. It is hoped that those archers,
who do not readily follow mathematical developments, will
obtain some information from the drawings and text of this
article. There are a great number of archers who do follow
mathematical developments and who have shown interest in
previous articles. It is hoped that they will obtain some value
from this treatment.

In order to illustrate the principle used in determining
the form of bending, we shall first treat the case of a rectangu-
lar bar clamped at one end and loaded with a force at the
other end. Fig. 2a shows this bar. Fig. 2b shows a cross-sec-
tion of the bar in the middle along its length and will be used
as reference in the following treatment.

In Fig. 2b let 1 equal length, w equal width and t equal
thickness of a bar clamped at one end and subjected to a force
F at the other end.

Let P be a point which is a distance x from the loaded end
and a distance y from the center of the cross-section o.

The force of compression at P will be proportional to vy.
Let fy equal force per unit area at P.

(1) Then fywDy equals force for a segment having thick-
ness Dy and full width of the bar w.

There is an extension force on the other side of the center-
line at a point corresponding to P having the same value as
the compression force.

Therefore the moment of force about o will be 2fy*w Dy.

The total reacting force will therefore be:

(2) The integral from y equals t/2 to y equals o of
2fy* w dy

Integrating this expression we get:
(3) f ¢ w/l12

But Fx equals moment due to the applied force, and since
the applied force equals the reacting force,
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(4) f w t%/12 equals Fx or f equals 12 Fx/wt®

Let Y equal Youngs modulus which is defined as the force
per unit area divided by the deflection per unit length.

If we consider an increment of length Dx and remember
that the force per unit area at P is fy equals 12 Fxy/wt3:-

Then Y equals 12 Fxy/wt® divided by the deflection at
P for an increment of length Dx

(5) Or the deflection at P equals 12 FxyDx/wt®*Y

The deflection at the end of the bar is x/y times as much
as at P for the increment of length Dx.

Therefore the deflection at the end of the bar due to the
bending of the length Dx equals 12Fx*Dx/wt*Y

Then the total deflection at the end of the bar due to the

FIG.ba Fla.6b Fle.6¢c
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bending all along the bar instead of for length Dx is given by
the equation:

(6) The integral from x equals 1 to x equals o of 12Fx*
dx/wt'Y which on integretation gives: 4F1°/wt®Y

If we want to know the total deflection of any other point
on the bar which is at a distance of D from the clamp, we
multiply equation (§) by (x — 1 + D) /y instead of x/y and
integrate from x equals 1 to x equals 1 — D

(7) Or the integral of [12Fx (x — 1 + D) dx]/wt’Y
from x equals 1 to x equals 1 — D

Integrating we get:
12F (x*/2 — 1x*/2 + Dx*/2)/wt®Y for limits of x equals
1 and x equals 1 — D

Substituting these limits we get:

12F (1D*/2 —D?/6) /wt*Y which is the deflection of any
point on the bar which is a distance D from the clamp.

Fig. 6a shows the form of bending of a bow constructed
with limbs corresponding to the bar just discussed. It is shown
with an 8 inch rigid section at the middle. A bow of this type
would do most of its bending near the handle and would be
considered worthless. Except for the rigid section at the mid-
dle, any uniform stick or limb would bend in this form.

Using the same method as in the preceding case we may
determine the bending form for a bar of length 1, thickness
t and width W at the clamp but having no width at the
loaded end. Fig. 3a shows such a bar loaded with a force F.

It may be shown as before that the deflection at any point
P for a length Dx equals 12FxyDx/wt”Y, See equation (5).

However in this case w is a variable and by inspection it
will be seen that w is equal to Wx/1

Substituting this value in the above we get:
(8) 12FlyDx/Wt’Y for the deflection at P

This deflection does not contain”x and is therefore a con-
stant at all points. This means that the curvature is constant
for all parts of the bar or that the bar is bending in the arc of
a circle.

This fact which does not seem to have been previously
observed, has some interesting and perhaps valuable applica-
tions, not only in archery but in other mechanical apparatus,
where it is desired to work all parts of a stressed member to
equal values with a simple practical shape.
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It should be clearly understood that the width at the clamp
has no other effect than that of changing the total deflection
for a given load. A member shaped as described above will
bend in the arc of a circle at all points and all points will be
equally stressed.

Continuing with the mathematical treatment:

The deflection at the end of the bar for an increment of

length Dx is x/y times as much as at P and therefore equals:
12FIxDx/Wt*Y

The total deflection at the end of the bar is therefore equal
to the integral of the above expression from x equals 1 to x
equals o

Integrating we get:
(9) 6FI’/Wt*Y

This is an increase of 509, over the value for the other
bar as given in equation (6)

The deflection for any other point along the bar which is
at a distance of D from the clamp is as before (x — 1 + D) /y
times as much as at P so that the total deflection at any point

along the bar is equal to the integral from x equals 1 to x
equals 1 — D of 12Fl(x — 1 + D)dx/Wt*Y
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Integrating we get:

(10) 6FID?*/Wt*Y (where the deflection is measured along;
the path traced by the point in motion.)

Fig. 6b shows the form of bending of a bow having limbs:
of this type. In all positions the limbs form arcs of circles..
This type of bending is often desired by bow makers.

It is interesting to note again that it does not make any
difference how wide the limb is at the handle, if it tapers on.
a straight line to zero at the end and has a constant thickness,
it will bend in the arc of a circle.

Of course you can not apply a string to a limb at its end |
which has no width. However for all practical purposes the:
same results will be obtained even though the bow does have:
a little width where the string is attached. A bow constructed |
in this manner will have all parts equally stressed and may be:
worked to a higher efficiency than one having the usual cross;
section.

If we constructed a bar having a length 1 and constant:
width W and tapered the thickness from T at the clamp along:
a straight line, to zero at the end, we have another interesting;
case. If we let t represent the variable thickness we have by
inspection t equals Tx/1.

If we treat this case as those preceding we shall find that:
the total deflection at the end of the bar becomes infinite..
This means that the bow so constructed would be whip ended,,
doing most of the bending at the ends. This form of bending:
is shown in Fig. éc. '

The deflection for any point along the bar, which is 2.
distance D from the clamp is given by the equation:

e —

12F I3 1 D |
Log - —
WT*Y 1-D |

In the above equation, when D equals 1, the deflection be- -
comes infinite.

However if instead of tapering the thickness along 2.
straight line we select a value of t equals T (x/1) % as shown
in Fig. Sa, we shall find on substituting the values in equation
5 that we again have a deflection at P which is independent:
of x, which means that the bar bends in the arc of a circle.

Substituting the value of t equals T (x/1)% in equation\
(6) we get after integrating 6F1>/WT°Y which is the same:
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form as we obtained for the bar which varied in width. This
is the total deflection at the end of the bar.

The total deflection of any other point along the bar which
is at a distance of D from the clamp will be found to be
6FID*/W'T®Y, which is the same form as equation 10.

A bow constructed with limbs of this type will bend in
the arc of a circle as shown in Fig. é6b.

A bow constructed in this manner will not be equally
stressed. That portion near the handle will receive more stress
than at the end.

Most bows are combination of this type and the 'semnd
type. The limbs become thicker near the handle. The fiber
stress therefore becomes greater as the thickness increases.
Either this part of the bow is over stressed or the part near
the end is not worked to maximum efficiency. It is believed
that there is some merit to the form given in the second case
treated in this paper. It will be discussed from a dynamic
point of view in a later paper.

In all the cases treated here, the cross section is that of a
rectangle. The effect of other cross-sections on the location
of the neutral plane of bending and on the static strains and
stresses will be treated in subsequent papers.

THE NEUTRAL PLANE OF BENDING OF A BOW

When a symmetrical homogeneous member is stressed by
bending, the elongation on one side is exactly equal to the
compression on the other side.

If a bow having a symmetrical cross-section is all made
from either heart or sap-wood, the elongation along the back
of the bow will in general equal the compression along the belly.

In such a bow there is a thin section located midway be-
tween the belly and back which is neither stretched nor com-
pressed. We may call this layer the neutral plane of bending.

Many bows are cut from the tree so that the back is com-
posed of sap-wood and the rest of the bow is composed of
heart-wood. Other bows are backed with various materials.
Any of these bows will have the neutral plane of bending
moved back or forward depending on the elasticity of the
materials used.

Practically all bows are non symmetrical in cross-section.
The belly is usually much narrower than the back. This type
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of construction moves the neutral plane of bending toward

the back of the bow.

It is necessary to know the location of this neutral plane
in order to determine the maximum fiber stress in the bow.
Since it is the object of the succeeding paper to show the effect
of the cross-section on the fiber stresses of a bow, a2 method
for locating the neutral plane of bending will be briefly out-
lined in this paper.

Let us consider a bow all made from the same kind of wood
having a cross-section as shown in Fig. 7a. Let the width of
the bow at the back equal w, the thickness from belly to back
equal T, the distance from the belly to the neutral plane of
bending equal a, and the distance from the back to the neutral
plane equal b.

Let us further assume that the portion back of the neutral
plane Z Z’ is rectangular in shape and that the portion in front
of the neutral plane is represented by the conic section z equals

Vc(a —y) (a parabola)
When y equals O, z equals w/2 equals \/ca

This type of construction may be found in many bows.
Of course the corners B B’ are usually rounded and the transi-
tion from the parabolic curve to the straight portion is grad-

ual at N and N’

Note: We are using the Z axis here in order to reserve
the X axis to represent the length of the bow in subsequent
treatments.

Let the force of compression at any point P be fy

The moment of force about the Z Z’ axis of a segment
Dy is equal to 2zfy*Dy

The total moment of force due to compression is therefore:
The integral from y equals a to y equals o of 2fzy3dy.

Substituting the value of z equals \/c(a — y) we have
for the total moment of force due to compression:

The integral from y equals a to y equals o of: 2f y2dy+/c
(a-y)

Integrating we get:

(32/105) fa®>/ac

In like manner we may find the moment of force due to
extension equals:
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The integral from y -equals b to y equals o of: 2fzy“dy.

But here as seen from Fig. 7a, z equals a constant equals
w/2

Therefore the moment of force due to extension equals:

The integral from y equals b to y equals o of wfy*dy.

Integrating we get: wib®/3

Since w equals 2/ac, we have for the total moment of
force due to extension, (2/3)fb’/ac

The numerical value of the moment of force due to com-
pression is equal to the numerical value of the moment of
force due to extension.

Therefore: |

(32/105) af \/ac equals (2/3) b*\/ac

Or

. a® equals (35/16) b® and a equals 1.30 b approximately.

Since the thickness of the bow T is equal to a + b we have
a equals .565 T and b equals .435 T

We therefore find that the distance from the belly of the
bow to the plane of neutral bending is 309 greater than the
corresponding distance to the back of the bow.

If the same type of bow is backed with a layer of material
having a thickness of t and a coefficient of elasticity equal to
n times that of the bow wood, the neutral plane of bending
will be moved toward the back of the bow.

As before let a equal the distance from the belly of the bow
to the neutral plane and b equal the distance from the neutral
plane to the back, including the applied layer of backing.

The moment of force due to compression will be the same

as before:
(32/105) a*fy/ac
The moment of force due to extension will be different.

If as before we let fy equal the force per unit of area
within the wood at any point, then the total moment of force
due to the extension of the wood will be equal to:

The integral from y equals b—1t to y equals o of w fy®

Integrating we get: wf(b — t)*/3

We also have a moment of force due to the backing
material.

Since the elasticity of the backing material is n times as
much as that of the bow wood we have for the moment of
force due to the backing:

[36]



The integral from y equals b to y equals b — t of wnfy?

Integrating we get:

(wnf/3) [b* — (b — t)®] where w equals 2v/ac

Adding these two moments and equating them to the
moment due to compression we have:

a® equals (35/16) [nb®> —n (b—1t)% + (b —t)?]

equals (35/16) [nb® — (n— 1) (b —t)*]

Let t equal mb

Then:

a® equals (35/16)b*[n — (n — 1) (1 — m)?]

a equals b®\/ (35/16) [n — (n — 1) (1 — m)?]

If n equals 2 and m equals .1

a equals b (1.30x1.083) equals 1.41 b
a equals .58 T, b equals .415 T

The distance from the neutral plane of the bow to the
back has been reduced by almost §%.

It should be clearly understood that the neutral plane is
moved toward the back of the bow only for materials which
have higher elasticity than the bow wood and which will stand
the elongation without exceeding the elastic limit.

Now consider the cross-section of a bow such as shown
in Fig. 7b. in which the belly side of the neutral plane is a
semicircle having radius of a., and the distance from the neutral
plane to the back of the bow is b and the width of the bow
at the back is w.

Following the same procedure as before, the moment of
force about the Z Z’ axis due to compression is the integral

from y equals a to y equals o of 2zy*dy. But z equals
V (a*—y*)
. Substituting the value of z and integrating we get:
3.1416fa*/8

The moment of force due to extension is as before wfb3/3.
Substituting the value of w equals 2a
The moment is 2fab®/3 ’

Since the moment due to compression is equal to the
moment due to extension we have:

3.1416fa*/8 equals 2afb3/3
From which a equals 1.194 b

With a bow having this type of cross-section the distance
from the neutral plane to the belly of the bow is about 209,
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greater than the corresponding distance to the back ot the
bow. This type does not have the neutral plane as close to the
back as the type having the parabolic shaped belly. On the
other hand a bow which has a belly with a hyperbolic shape
will have its neutral plane closer to the back of the bow than
either of these types just discussed.

In case the section of the bow is all of the same kind of
wood, a simple method of locating the neutral plane of bend-
ing may be followed by the non-mathematician.

Lay out the shape of the cross-section on a heavy cardboard,
using any convenient enlarged scale. Cut this cardboard sec-
tion out with a pair of shears. Draw a line from the belly to
the back which divides the section into two equal parts like
the lines Y Y’ in figures 7a and 7b. Punch a small pin through
the cardboard section on this line at such a position that the
section will remain in balance on the pin for any position.
After a number of trials you will find a point where the card-
board section may be rotated on the pin to any position, and
at which, it will be in balance. This point is known as the
center of gravity and is on the line corresponding to the plane
of neutral bending. The distance from this point to the back
therefore gives the distance of the neutral plane of bending
from the back.

If care is used in laying out the cross-section shape on the
cardboard and in obtaining the proper balancing point, ac-
curate results may be obtained.

Mg. To.
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FIBER STRESSES IN BOWS

In a preceding paper we have defined, and given a method
for locating the neutral plane of bending of a2 bow.

The fiber stress in any cross-section of a bow is proportion-
al to the distance from the neutral plane of bending. The
fiber stress is therefore greatest at the back or belly of the
bow. This stress is usually referred to as the maximum fiber
stress.

If the cross-section of the bow is symmetrical with respect
to the neutral plane, the fiber stress at the back, which is one of
stretch, will equal the fiber stress at the belly, which is one of
compression.

If the cross-section of the bow is non-symmetrical with
respect to the neutral plane, as discussed in the previous pub-
lication, the fiber stress at the back will not equal that at the
belly. For example if the cross-section of the bow is such
that the belly side of the neutral plane is a parabola and the
back side of the neutral plane is a rectangle, the fiber stress at
the belly surface will be approximately 309 higher than at
the back.

If the cross-section of the bow were kept rectangular in
shape on the belly side as well as for the back, the same weight
bow could be obtained with a2 much smaller maximum fiber
stress. It is, of course, desirable to work the wood to as high
a stress as possible without fracture or serious permanent set.

We shall now determine the effect that the cross-section
has upon the maximum fiber stress in a bow.

It has been shown in a preceding paper, (The Effect of
Thickness and Width of a Bow on its Form of Bending) equa-
tion (3), that the total moment of force about the neutral
plane of bending, at any section of a rectangular shaped bar,
is equal to ft®*w/12, where t equals thickness, w equals width,
and f is a constant, which when multiplied by the distance

from the neutral plane, gives the force per unit of area at the
point.

It was also shown, equation (4), that fwt®/12 equals Fx,
where F is the load on the end of the bar and x is the distance
from the end of the bar to the section.

Therefore f equals 12Fx/wt® (1)

The maximum stress will be at the greatest distance from
the neutral plane. In this case, where the cross-section of
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the bar has the shape of a rectangle, the neutral plane will be
in the middle and the greatest distance from it will be t/2.
The force per unit of area at the surface under tension and
also at the surface under compression will be ft/2.

Making use of equation (1) we get for the maximum fiber
stress: ft/2 equals 6Fx/wt? (2)

It has been shown in some of the early publications that
the tension in the string of most bows is approximately equal
to the weight of the bow at full draw. Also at full draw, the
string pulls in such a direction that the string tension or bow
weight may be substituted for the load F in the above formula.
This formula will give a rough idea of the maximum fiber
stress in a bow.

Let us examine a section of a 40 pound bow having all
sections rectangular in shape, constant thickness and a width
which tapers along a straight line from the handle to the bow
tip. Suppose we take a section which is 30 inches from the
end, where the width is one and three-eighth inches and the
thickness is three-quarters of an inch. Substituting in equa-
tion (2) we find for the maximum fiber stress:

6 X 40 X 30

ft/2 equals equals
1.375 X .75%

9,300 pounds per square inch.

The fiber stress at elastic limit, given by The Forests Pro-
ducts Laboratory, for Yew is 10,100 pounds per square inch.
The stress at rupture for this wood is given as 16,800 pounds
per square inch. We thus see that in this bow the wood is
being worked close to, but below the elastic limit.

If this bow had the same thickness and same width through-
out its length, the fiber stress would become less and less as
you approach the tips. The bow would bend in a form as
shown in figure 6a of the paper referred to above. However
if the width is tapered on a straight line from the handle to
the tips, the decrease in the value of x is exactly offset by the
decrease in the width w so that the fiber stress is the same
throughout the length of the bow.

For example if we take a section which is 15 inches from
the tip the thickness is still three-quarters of an inch, but the
width is only one-half as much as before, i. e. 11/16 inches.
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Substituting in equation (2) we get for the maximum
fiber stress:

6X40X 15
ft/2 equals equals
687 X .75°

9,300 pounds per square inch.

This is the same value obtained for the section 30 inches
from the tip. In like manner every other section will have the
same maximum fiber stress.

Let us now determine the maximum fiber stress in a yew
bow manufactured by a well known manufacturer of archery
tackle. This bow weighs forty pounds and is seventy inches
long. On examining a section 30 inches from one end of the
bow and locating the neutral plane of bending by the method
described in the preceding publication, we find that the bow
has a thickness of one inch, a width of one and one-eighth
inches and a shape such that the neutral plane is .55 inches
from the belly and .45 inches from the back.

As shown in the preceding publication, the moment of
force due to extension is wfb®/3, where b is the distance from
the back to the neutral plane. The total moment about the
neutral plane is twice this value. The moment due to the
load F is Fx, where x is the distance from the end to the sec-

tion. Therefore f equals 3Fx/2wb?® (3)
Substituting in this equation we get:
3 X40X 30
f equals equals 17,600.

2 X1.125 X .45°

The maximum fiber stress will be on the belly side where
the distance from the neutral plane to the belly is .55 inches.
Since the maximum fiber stress is f times this distance we

have: 17,600 X .55 equals 9,660 pounds per square inch for
the maximum fiber stress.

Taking another section 15 inches from the tip, we find
the thickness is .60 inches, the width .95 inches and the neutral
plane is .27 inches from the back and .33 inches from the belly.

Using these values in equation (3) we get:

3X40X 15
f equals equals .48,000
2X.95 X.273
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The maximum fiber stress will be on the belly side which
is .33 inches from the neutral plane and will equal: 48,000
X .33 equal 15,900 pounds per square inch.

This is an increase of 689 over the stress at the other sec-
tion and is beyond the elastic limit given for this wood. It is
very close to the value given for the modulus of rupture.

If the thickness had been left the same as at the other sec-
tion, and the width reduced to Y. its former value (.562),
the maximum stress would have been reduced to the same
value as at the other section. We would have had on substi-
tuting in equation (3):

3X40X 15
f equals equals 17,600.
2X.562X .45°

And: 17,000 X .55 equals 9,660 pounds per square inch.

The bow would have had a better cast and would not have
taken a permanent set.

If instead of the parabolic section for the belly, a rectangu-
lar section had been used, the maximum stress would have been
reduced about 189, because the distance of the belly from
the neutral plane would have been .45 inches instead of .55
inches. The bow would have had exactly the same weight.
The full thickness of 1 inch might have been used, with an
increase in the weight of the bow of 279%. In which case the
maximum fiber stress would have been by equation (2):

6 X 50.8 X 30
ft/2 equals equals 8,130
1.125 X 1*°
pounds per square inch.

Even with this increase in bow weight, the maximum fiber
stress is 1,530 pounds less than for the parabolic section.

The reason for selecting these two sections on the bow was
to show that the maximum stress exists where the bow took
its greatest set. There was no set near the handle but it was very
great about 15 inches from the ends of the bow.

On first thought this may be confusing to the reader be-
cause we have previously stated that the fiber stress occurs
where the bow is thickest. That statement however applies
only to a bow the limbs of which bend in arcs of a circle.
Obviously this bow does not bend in the arc of a circle. How-
ever a casual observation would not reveal this dificulty. An
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apparently small change in curvature will make a big differ-
ence in the stresses.

There is one more point in connection with the cross-sec-
tion of a bow which should be mentioned. Many bows are
worked beyond the elastic limit, but of course not beyond
the modulus of rupture.

It has been shown by the Forests Products Laboratory that
the modulus of rupture for compression is much lower than
the modulus of rupture for extension. In all of the tests which
they make in determining the modulus of rupture for static
bending, it is the compression side which gives way first.
This moves the neutral plane closer to the extension side so
that the radius of curvature is increased at this point until
finally the extension side gives way.

The archer must not be confused by the fact that a bow
always breaks on the back. This happens only because the
belly gives way and thus causes greater extension stress along
the back by the shift of the neutral plane. The archer does
know that a bow will break where there is a bad chrysal on

the belly side. Here he observes the belly fault before the
break occurs.

In most woods which they have tested, the modulus of
rupture for extension is over twice as high as for compression.
(By modulus of rupture is meant the maximum fiber stress
in pounds per square inch at the breaking point.)

In like manner the elastic limit for extension is over twice
as high as the elastic limit for compression.

The orthodox cross-section of a bow is such as to make
the fiber stress on the belly or compression side greatest. On
the other hand, wood will not stand as much compression as
extension. Why thén do we not construct bows with the
belly side flat and the back side narrow so as to take advantage
of the greater elastic limit of extension?

The first answer is: Perhaps we should. Another answer is
that the back of a yew bow is usually made of sap wood which
may have a lower modulus of elasticity, so that the neutral
plane is moved toward the belly side a sufficient amount to
more than compensate for the shift due to the shape of the
belly. Still another answer is that the elastic limit is not a
definite value but depends upon the shape of the specimen.
[t has been shown by the Forests Products Laboratory that the
clastic limit in compression is increased considerably by the
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presence of other less stressed fibers. The elastic limit in bend-
ing is much greater than for compression parallel to the grain,
where the entire specimen is subjected to the same stress. This
is probably due to the fact that in bending, only the surface
layer of the compression side is subjected to the maximum
stress. The adjacent layers of less stressed fibers help to support
those receiving the highest stress. This raises the limit to which
the specimen may be stressed before failure is reached.

There is a strong probability however, that for homogeneous
woods, such as osage and lemonwood, that a better cast may be
secured by reversing the traditional construction of a bow,
by making the belly side the back. In such a bow, however,
greater precautions must be taken against slight imperfections
on the back surface. A trapezoidal shape with the narrow side
for the back, well protected with a thin layer of some good
backing material, would probably be the most practical shape.

At the present time we do not have enough data on the
tensile strength of woods to reach any definite conclusion as
to the best cross-section for a bow.

Past experience has shown that in many arts, the adoption
of a specific design was accompanied with a very good reason
and science has only been able to make slight improvements.
The construction of a bow is an art which has been developed
as most arts, by the method of trial and error. It may be found
that this method has developed the best bow that can be made.
However there is the possibility that this method has not
developed the best type of construction and that science may
point the way to a considerable improvement. In fact there
are already indications that those of us who can not pull a
50 to 60 pound bow, may be able to have our point of aim on
the gold at 100 yards with a bow weighing less than 40 pounds.

During the period that Dr. Hickman was writing these
articles for Ye Sylvan Archer he included a few which gave
the results of experimental investigations. A brief summary
of the experimental investigations will now be given.
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